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One of the factors which is influencing the motion of any object in the 
near-solar space is the pressure force of solar radiation, In recent 
years a number of papers were published 11-51 where the authors analyzed 
systems which utilize the solar radiation pressure effect either for 
translating the center of mass of the satellite (solar sail) or for 
creating moments which control the angular orientation of the satellite 
(solar control). In these papers it was usually assumed that the light 
pressure acts on a plane which is part of the driving assembly or Part 
of the attitude control systea of a space vehicle. In this paper, using 
a more general description as a basis. it is 
characteristfos for the determination of the 
the body of a space vehicle. 

If in a vacuum a light flux propagates in 
energy entering a unit volume is equal to w, 
sponding to the unit volume, is equal to K 

KC+ 

where c is the speed of light in vacuum. ‘Ihe 
in the direction of propagation of the 
light. Jking the interaction of the light 

attempted to obtain integral 
action of the light flow on 

a given direction, and its 
then the momentum, corre- 

(1) 
ants vector K is pointed 

with any body there occurs a change of the 
ants vector, 9s a result of which t;he 
body is subjected to an impulse fbt, which 
is related to the change of momentum AK by 
the usual relation 

fAtft = AK (3 
Fig. 1. 

13x0 
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where At is the time during which the momentum vector changes by AK. 

Let us study the interaction of the light with an area element AS 
(Fig. 1). There we shall assume that the incidence angle of the light 
flux is equal to the reflection angle, the incident and the reflected 
fluxes, as well as the perpendicular to the surface element lie in one 
plane; the amount of energy in a unit volume of reflected flux represents 
a part of the energy contained in a unit volume of the incident light 
flux. Let us denote by 6 the incidence angle of the light flow, K, and K, 
are the momentum vectors of the incident and reflected light flow, re- 
spectively. ‘Ihe magnitudes of the vectors \K,\ and lKll are related as 
follows: 

IK*l = E I& I 

where E is the reflection coefficient, i.e. the ratio of the energy 
density of the reflected light flux to the energy density of the incident 
light flux. With full reflection E = 1, with full absorption E = 0. 

With the above assumptions we obtain from the triangle ACD 

or, considering (3) 

I AK1 = IKII Vi + ES + 2t cos 26 (4) 

Furthermore, from the triangles A CE and A DF we obtain 

Here 9 is 
force f, and 

Since the 

CE = I K, 1 sin 6, DF = 1 AK I sin q 

the angle between the vector AK, and consequently, also the 
the perpendicular to the surface element. 

triangles DBF and BCE are similar 

DF DB 
CB =CB= 

consequently, 

sincp = (1 - E) 1 K1j sin t+ = (1 - e) sin 6 

IAKl 1/i + eJ + 2e co9 2 8 

Now we shall determine the magnitude of lK,l. ‘Ihis magnitude is equal 
to the motion of the light flux arriving in the volume of the paral- 
lelepiped with a base area AS and sides cAt long. Since the light stream 
makes an angle 6, with the normal to the surface, the volume of this 
parallelepiped is equal to AScAt cos 6. ‘Ihe motion arriving at this 
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volume is equal to 

1K,l=+,At AScos6 =w At AScos6 (6) 

From the relations (21, (a), (5) and (6) it follows that the force 
element of light pressure df, acting on a surface element cls is equal in 
magnitude to 

df = w )f‘1 + s2 + 2s COY 26 cos 6 ds 

and encloses an angle with t!le normal to the surface of 

Q, = rin_’ r iv (1 - 2) sin 6 

1 + 82 + 2i co3 26 3 

(7) 

With total reflection E = 1, !df = 2w cos*9uS and cp = 0, i.e. the 
force of the light pressure is directed normal to the surface element. 

With total absorption E = 0, df = w cos6tK and ‘p = 6, i.e. the force 
of the light pressure is directed along the incoming light stream. 

‘Ihe light energy density 1~’ is related to the flow of light energy ST 
by E = WC. In turn, the magnitude of the flux of light energy, arriving 
at a unit surface of the body is inversely proportional to the square of 
the distance from the light source. Thus we obtain finally 

df s+(+)‘Jf 1 + es + 2ecos26cos6dS (9) 

where E, is the magnitude of the flux of light energy arriving at a unit 
surface of the body placed at a distance ra from the light source. 

The magnitude of the flux of the sun’s light energy at the distance 
of the earth’s orbit [S] is 

Consequently, for a = 0 and 6 = 0 a surface of 2120 m2 (46 m square) 

is necessary to obtain a force of X gram. 

As an example, let us study the influence of light radiation upon the 
motion relative to the center of mass of a space vehicle of tne form of 
a right circular uniform cylinder of radius R and length 1. Let us assume 
that the diametral plane of the cylinder is perpendicular to the direc- 
tion of light radiation. Also let us assume that the turning moment 
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relative to the cylinder axis arises from the fact that one-half of the 
lateral surface of the cylinder is absolutely reflective and the other 
half is absorbent with a reflection coefficient E < 1. With these assump- 
tions the problem reduces to the plane case. 

Figure 2 shows a cross-section of the cylinder perpendicular to its 
axis. Axes n and 5 are inertial reference axes, while x and y are rotat- 
ing together with the cylinder. Here 
we shall assume that the light pro- 
pagates along the negative direction 
of the n-axis. Let the contour of 
separation of the lateral surface of 
the cylinder into two halves with 
different reflection properties lie 
in the plane y = 0 and the surface 
y > 0 be absorbing, while y < 0 is 
absolutely reflective. 

Then the equation of motion of 
the cylinder relative to its axis 
has the form 

ICE’ + b, sin2 a sign sin a = 0 (10) Fig. 2. 

( be = f + (+)“Rzl (1 - 8) = eonst) 

?iere I is the mint of inertia of the cylinder. ‘&is equation is 
analogous to the equation of the mathematical pendulum with the differ- 
ence that the restoring moment in the case at hand is proportional to the 
function F(a) = sin’s sign sin a instead of F’(a) = lsin al sign sin a = 
sin a as in the case of the mathematical pendulum. 

‘Ihe equation of the phase trajectory of motion, described by Equation 
(10) has the form 

-$-+ll(a) = C (II(a) = o,l\sinBasignsinada, @a’=+-) (11) 

Here ll(a) is the potential energy of the cylinder, C is a constant of 
integration. 

Figure 3 shows a sample sketch of the functions sin2a sign sin a, 
TI(a) and a sample drawing of the phase trajectories. Thus, with a suffi- 
ciently small initial angular velocity the cylinder will execute undamped 
oscillations about a position of stable equilibrium which corresponds to 
a situation where the ideally reflective surface is turned toward the 
light. The maximum initial angular velocity of the cylinder in this 
region is determined as a point of the separatrix (aoS.X, a* = 0). From 
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the equation of the sepafatrix it follows that 

After substitution of (12) into the expression for the moment of 
inertia of the cylinder we obtain 

where y is the material density of the cylinder. 

Let us assume that the source of light is the sun and the distance 
from the sun to the CyliDder is equal to the distance between the sun and 
earth. Then h,, = 4.64 x XOW5 dyne/cm’. Let R = 100 cm, E = 0, y = 1 g/cm’. 
Then 1 -a0 

I*X 
1 = 0.68 x low4 l/set = 0. 0Q39°/sec. Calculations show that 

the stability effect of the solar pressure is very small for a cylinder 
whose radius equals 100 cm. However, if the radius is R = 10 cm, then 

laO.lx 1 = O.O39*/sec, which represents already an appreciable magnitude. 

Now we shall derive an expression for the forces and moments of light 
pressure, acting upon a body of arbitrary shape which changes its orien- 
tation relative to the light stream. For this purpose we shall introduce 
an *‘inertial” coordinate system {n{ and a coordinate system xyz centered 
in the body. ‘Ihe direction cosines of the xyz system relative to the 2~); 
system are functions of time. We denote the directions of the r, y, z 
axes by i, j, k, respectively, and the direction of the exterior normal 
at every point of the surface of the body by n 

n = cos (n, i) i -t- cos (n, j) j -+ cos (n, k) k W 

Furthermore, we denote the direction opposite to that of the light 
flux by T, and its direction cosines in the x, y, t system by 4, b,, co, 
such that 

IlIe quantities ua, b,, cg will also be functions of time. 

The boundary of the illuminated part of the surface (terminator) shall 
be determined on the promise that at every point of the terminator the 
vector T lies in a tangent plane; consequently, at the boundary we have 

Bxn - 0 05) 

In the cases where the vector n is not a continuous function of the 
coordinates at some parts of the surface (cube, cylinder) one should 
utilize the relation 
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wn > 0 

for the determination of the terminator. 

W 

Note that the product T x N is nothing else but the cosine of the 
angle of incidence of the light stream (see (8) and (9)). 

Further, we denote by Jf an elemental force which is acting on an 
elemental area of the surface ris. Here 

df = fdf = df (pi + qj + rk) 

where f is the unit vector of df and p, q, r are its direction cosines 

Fig. 3. 

in the x, y, z system. 

The magnitude of df can be com- 
puted from (9). For the determina- 
tion of p, q, r three equations are 
necessary. One of them is the obvious 
relation 

p= + q2 + r= = 1 (18) 

In order to arrive at the second 
equation, we shall use the assumption 
that an incident ray and a reflected 
ray lie in the plane containing the 
normal of the area element. This 

means that the unit vectors f, T and 
n lie in one plane, i.e. 

(nx7)xf=O W 

The third equation is obtained by substituting into (8) the values 

sin 6 = 1 z X 

It can be easily shown that 
(18) and (8) obtained here has 

f =- 

4, sincp =If X n/ 

the solution of the system of Equations 
the form 

(Z - E) x + 2m (mm} 

t/ 0 - E)i + ha” (txn)2 (20) 

From (20) it follows that in the case of a totally absorbing surface 
the direction of the force coincides with the direction of the light 
stream, i.e. opposite to the direction of T and 

P” - a01 Q = - ho, ?=-Co (21) 
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In the case of a totally reflecting.surface the direction of the 
force is opposite to the direction of the exterior normal n and 

p = - cos (n, i), Q= - ms fn, 3, r = - cos (n, k) fz2) 

The total force F of the light pressure, which is acting on a body of 
arbitrary shape is equal to 

where S, is the illuminated part of the surface, whose boundary is deter- 
mined from (16). 

If we consider (21) and (22) and also the above remark on the equality 
of the cosine of the incidence angle with r x n we obtain an expression 
for a force r;* which acts on a body bounded by a totally absorbing sur- 
face, and for a force F- 
fleeting surface 

which acts on a body bounded by a totally re- 

F+ = - h,,~ 
1 
(zxn)dS, 

&,) 

liere the integration 

Using 
the body 
is given 

Let R 

Fquations (91, 

F- = - 24, \ n (zxn)2 dS (ho= % (+)‘) (23) 

(A,) 

is carried out over the region T x n a 0. 

(20) and (23) we find that the force acting on 
bounded by a surface with an arbitrary reflection coefficient 
by the formula 

F = (1 - e) F+ -+ eF- = F+ + e (F- - F+) 

= xi f yj + tk be the radius vector of a point on the surface 
in question, where the coordinates n, y, z are related by the surface 
equation. Then the elemental moment of light pressure will equal A! = 
R x cif and the total moment will be 

M= \ Rxdf 
. 

(St) 

From the foregoing it follows that it is possible to obtain rather 
simply expressions for the moment of light pressure acting on a body 
with a completely absorbing surfaceM+ and on a body with a completely 
reflecting surface M- 

M+ = h,,~ x \ R (~xn) dS, M- = 2h, \ n x R (TXR)~ dS (24) 
A, (4) 

and for a body bounded by a surface with an arbitrary reflection coeffi- 
cient 
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M = (1 -e)M++eM- =M++e(M--MMS) 

The combinatiol~ of Formulas (23), (24) and (16) gives the force action 

of the light stream on a body placed in t!lat stream. The corll?utation of 

the forces and moments of light pressure by means of (23) and (24) is 

rather complicated even for simple surfaces since the integrand as well 

as the integration limits depend on both the surface parameters and on 

t!le orientation of the light stream relative to the body. Thus it is de- 

sirable to simplify the above expressions so as to ease the calculations. 

It turns out that this can be done easily for Ft and M’. 

For this purpose we add the illuminated part of the surface to the 

closed surface consisting of the illuminated part of the surface of the 

body, the lateral cylindrical sur- 

face whose generator is parallel to 

the direction of the light stream 

and whose direction is along; the 

terminator (Fig. 41, and the flat 

bottom, perpendicular to the direc- 

tion of the light stream, We shall 

apply to this closed surface the 

Ostrogradskii-Gauss formula. As a 

result we obtain 
(25) 

F+ = hO~SZ, M+ = h,z x 5 R&S 

where S, is the projection of the illuminated 

plane perpendicular to the light stream. 

We denote the point, relative to which the 

and the projection of this point onto a plane 

the vector T, by 0’ . After changing the vector 

obtain 

M+ = 12,~ x 
\ 
R'dS 

&) 
where the vector R’ is the radius-vector of a 

lative to the point 0’. 

Furthermore, we represent the vector R' as 

part of the surface onto a 

moment is calculated, by 0, 

(Fig. 4) perpendicular to 

R to the sum R = 8 + R' we 

(26) 

point in the region ,C, re- 

the sumR =r +ro, where 
r0 is the radius vector of the center of gravity of the bcttom relative 
to the origin of the radius vector R', and r is the running radius vector 

of a point relative to the center of gravity of the bottom. 
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After substituting fi’ into (26) we obtain 

M+ =I hJS,~ x r. (27) 

!kre XT0 is the radius vector of the center of gravity of the pro- 
jection of the illuminated part of the surface onto the ,‘S2 plane with 
respect to that point relative to which the moment on the plane is calcu- 
lated. 

In regard to F” anrfM_, however, it was mt possible to obtain sig- 

nificant improvements of the calculation method. Ttlese quantities have 
to be determined by straight integration. 

As an example we introduce results of calculations of forces and 
moments due to light pressure which act on bodies bounded by various de- 
finite surfaces. 

I. Et1 ipsoid 

In the case of a totaIly absorbing surface 

F+ = - k,r,Z ~/ao213eC” + b,2A2C” + c,1AZB2 (28) 

where au, bo, co are the direction cosines of the vector T relative to 

the X, y, t axes, respectively. The moment with respect to the center of 

the ellipsoid, which coincides with the center of mass, is equal to zero. 

2. Right circular cylinder 

x2 + y2 = RZ, lzl<n 

In the case of a totally absorbing surface 

F+=-k#R” ,cOj+~-$‘%+] 
E 

@9l 

The moment with respect to the center of the cylinder iS equal to 

zero. 

3. Right circular cone 

c@+$= R2(1-+r s Odz< h 

III the case of a totally absorbing surface 

F+= - h,-m IP/co 1 (QGO) (30) 
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Here 

1 (I G-J I) = sin-’ 

[ ( 2; ) lCd_ slq_ 2 (a) ,:", Sk 

vi--c* 

f(Icol) =0 for Q=O, f(lc,l)=x for CO-O 

The projections of the moment with respect to the center of mass Onto 
the x’, y*, z axes (axes x‘, y’ are parallel to X, y but pass through 
the center of mass of the cone) are equal to: 

for Q < 0 

My = - .+ hob,,hn R2 1 co, IMyl’ = .$ kc#aokx R’I co I, M, = 0 (3i) 

for R > 0 

M, ==O 

4. Hemisphere 

2% + y’ + 22 = u=, z>o 

In the case of a totally absorbing surface 

F+ = - koz y (1+lcol) 

The projections of the moment with respect to the center of mass of 
the hemisphere onto the axes x’, y’, z (axes x’, y’ are parallel to x, y 
but pass through the center of mass of the hemisphere) are equal to: 

Mz=O 

(33) 

It can be seen from (33) that the moment does not approach zero at 

co = 0 as would be expected, (the same takes place in the previous 
example). This is explained by the fact that the centers of gravity of 
the body of revolution and of the section of this body by an axial plane 
do not coincide in general. 

As was already pointed out, the calculation of forces and moments due 
to light pressure acting on a body bounded by a totally reflecting 
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surface is considerably more complicated than in the case of the totally 
absorbing surface, and the results are more complex and cumbersome rela- 
tions. Thus in the case of a completely reflecting surface we shall re- 
strict ourselves only to the surfaces of a sphere and a right circular 
cylinder . 

5. Sphere in the case of a totally reflecting surface 

F- = - h,dP, M-=0 (34) 

If we let in (28) A = B = C = R, i.e. examine a particular case of an 
ellipsoid-sphere, then it can be seen that the force action of the light 
flux onto the sphere is the same for totally absorbing and for totally 
reflecting surfaces. 

6. Right circular cylinder in the case of a completely reflecting sur- 
face 

F-x = - 9 hoa,Ra J/m, FP- =- 3 o o 16hbRaj/ke,’ 

F; = - 2hg~R%~2 sign c,,, M-=0 (35) 

7. Body of revolution 

x2 + y2 = f( 2) (z is the axis of revolution) (36) 

Let us study the case of a completely absorbing surface. 

If the surface of revolution is also bounded by a face plane, then one 

has to add to Equation (36) also the inequality 

z <z* (371 

where Z* is a bounding quantity. Let us denote. as earlier, the unit 
vectors of the axes x, y, z by i, j, k, respectively and deteraine the 
direction cosines of the exterior normal at every point of the lateral 
surface 

‘iaf (2) 
cos (n, k) = - 

l v/r (5) + ‘la li’ (t)lP ((P (4 = $) 

After substituting (38) into the equation of the terminator v x n = 0 

we obtain 

On the end surfaces 
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cos (n, i) = 0, cos (n, j) = 0, cos (n, k) = ‘F 1 

Nor we introduce a new coordinate system x’, y”, z’: formed from the 

old one by rotations p and 6 so that the table of direction Cosines of 

the new coordinate system has the following appearance with respect to 

the old system (Fig. 5): 

Here 

2 Y 
2” cos p sin B : 

y” -sin cos 6 cos p cos 6 sin 6 

a’ sin p sin 6 - c.os p sin 6 co9 6 

co9 p = 1/& ’ W =- viuL co2 , 
cos 6 = r/i - co2 , sin 6 = co 

We denote the unit vectors of the x”, y”, Z” axes by i”. J “, k”, re- 

spectlvely. Then it is readily established that j” x T = 1 and k x f = 0, 

i.e. I.he plane X“Z” is perpendicular to the direction of the light stream, 

and the vector k lies in the z”y’‘-plane. 

After replacing the old coordinates in (36) and (39) by the new ones 

we obtain 

x”2 + [y” J/T=g2 - z*c,]~ = f (2) for 2 = y”c, + Z~ VI-cop 

c- 
[y”l/l--c,2-_z”C,l~1-Ce,2=~f’(~) for ~=y~C~+z” l/l-_ 

If we eliminate the y” coordinate from (40). we obtain a coupling 

equation between X” and z”, i.e. the equation of the projection of the 

terminator onto a plane perpendicular to 

the light stream. For the calculation of .i’ ~, 1 ’ 2’ 

forces and moments acting on a body with I 

a totally absorbing surface it is neces- 

sary to determine the magnitude of the 

area of this projection. One can arrive Y’ 
at the following conclusions on the basis 

of the general form of Equations (40): 
(1) The magnitude of this area depends 

only on the parameters of the surface it- 

self, and the angle between the axis of 

body symmetry and the direction of the 

light stream; (2) the curve bounding the Fig. 5. 
projection is symmetric relative to the 

r’-axis, i.e. the center of gravity of the projection area lies on the 
*‘Laxis. 
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In the derivation of the Equations (40) it was assumed that the 
terminator lies completely on the lateral surface of the body and does 
not pass over the end face. In order to take into account the influence 
of the end face it is necessary to obtain the condition for the inter- 
section of the terminator with the plane of the face. This condition can 
be written as follows: 

where R is the radius of the face and D is the distance of the face from 
the coordinate origin. When this condition is satisfied and we replace 
the old variables by new ones in the equation x2 + y2 = R2 and L = a, the 
eqwti6n of the projection of the end-face onto the x*‘~“~-plane becomes 

The intersection of this curve with the curve defined by Equation (40) 
presents the complete projeetion of the illuminated part of the surface 
onto a plane which is perpendicular to the Iisht stream. As can be seen, 
the consideration of the influence of the end face does not ohange the 
general conclusions made earlier. Consequently, the area of the pro- 
jection can be considered to be a function of the direction cosine cu, 

i.e. S2 = S2(co). 

Considering that the center of gravity of the projection area lies on 

the ~‘Laxis, we can write the vector ru in the form co = rok” and the 

moment acting on the body of revolution with a totally absorbing surface 

in the form 

M+ = ho.!& (co) r. [t x k” J (43) 

The magnitude ru of the vector ru is also a function of the surface 

parameters and the direction cosine co. i.e. rQ = ro(co). Using the table 
of direction cosines we find the following projectfans onto the re- 
spective axes: 

Then we represent Equation (43) with consideration of (44) in terms of 
the projections onto the axes as follows: 
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The magnitude of the total moment due to light pressure will be equal 
to 

fM+l = Y-w,+)@ + tM,+P = ho & @o)iro (co) W.6) 

It follows from (46) that IM+]= 0 for ce = T 1, since for ce = i 1 the 
projection of the illuminated part of the surface is a circle with its 
center at the axis of symmetry. However, Mx’ and dl + can approach zero 

not only for co = f 1, but also for some values ofYc,, = co*, when 

re(ce*) = 0. 

If it becomes necessary during the determination of the moment to go 
from point 0, relative to which the moment is calculated by (45). to the 
point C. which lies on the axis of the body at a distance at from point 
0, then 

As before, M,* + (C) = My’(C) = 0 for IceI = 1, a0 = be 
turn out, however, that according to (46) these components 
to zero for some value ce*, which is a root of Equation 

Fe (co) + crt Vi - eoa = 0 

= 0, It may 

will be equal 

Wf 

For a body of revolution in the case of a totally reflecting surface, 
whose equation is written in terms of the X, y, E axes having their 
origin at the point 0, the projections of the moment onto the x’, y’, z 
axes having their origin at the point C, will be 

M,,- (c) = 2ho \ (rxn)‘y ‘+ lhf’(z)+ Oz d$, 

(S,) vr (ZJ + ‘I4 11’ @)I’ 

M,*-(C) = - 2h@ (@CD)’ 2 
v f ‘Ia f’ (2) + oz 

M,- (C) = 0 

ds 

v’r (Z) + ‘/4 II’ Wl’ ’ 
(49) 

@,I 

where uz is the distauce between the points 0 and C, 
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